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We describe the theory of the Berggren basis, which unites bound, resonant, and continuum states
under a single consistent framework, and demonstrate its utility by calculating the resonance in the
11Be halo nucleus using a simple Woods–Saxon model. The basis is generated by applying the
contour deformation method and diagonalizing the discretized Schrödinger equation in momentum
space. We show that the energy obtained are comparable in accuracy to the differential equations
approach, although the asymptotic behavior does not appear to be adequately described.

I. INTRODUCTION

Resonances play an important role in the understand-
ing of many quantum systems. They are an intrinsic
property of the systems and describe the energies at
which cross sections are strongly enhanced.[1]

Formally, resonances appear as poles of the S-matrix
in the complex momentum plane.[2] As states with com-
plex momenta, they are not directly observable. How-
ever, if the width is sufficiently small, they can become
close enough to the real momentum axis that they im-
print themselves on the physical reactions, resulting in
the characteristic arctangent phase shift.

Resonant states, sometimes referred to as Gamow
states, are not part of the standard quantum mechanical
framework due to their non-normalizability through the
L2-norm. However, with the development of the rigged
Hilbert space and its associated nonhermitian formalism
of quantum mechanics, the concept of resonances has
been made fully rigorous.[3].

Unified with bound and continuum states under
one framework through the Berggren completeness
relation,[4] resonance states form a useful building
block for many-body theories such as the Gamow
shell model[5], the Gamow-Hartbree-Fock-Bogoliubov
method,[6] and the complex coupled-cluster method.[7]
All of these methods make use of the unique properties
of resonant states to enable calculations of nuclei far from
stability.

In this paper, we demonstrate the utility of the
Berggren formalism in the calculation of a simple elastic
scattering problem through the basis expansion method.
We make use of the contour deformation method to con-
struct the Berggren basis, as described in [8] and [9], in
which the Schrödinger equation is analytically continued
into the complex plane.

The numerical calculations are performed using a com-
bination of Python and C code, making use of the
Numpy, Scipy, and Slatec libraries. The code for this
project has been made public available on GitHub.1

∗ E-mail: yuan@nscl.msu.edu
1 https://github.com/xrf/phy982-proj

II. THEORY

A. General setup

We shall consider a simple scattering problem in which
two particles interact via a spherically symmetric poten-
tial V , defined as a function of the relative coordinate
R. The interaction is assumed to be short-ranged and
should thus become negligible after a finite radius (this
excludes Coulomb interactions). The Schrödinger equa-
tion for such a system is given by:2

− 1

2µ
∇2

Rψ(R) + V (R)ψ(R) = Eψ(R) (1)

where µ is the reduced mass of the system and E =
k2/(2µ) is the energy of the eigenstate.

The standard approach to solving such a problem is to
use separation of variables to decompose the wave func-
tion into a sum of partial waves, each identified by orbital
angular momentum ` and its z-projection m. Since this
is a scattering problem, we may also assume azimuthal
symmetry by aligning the the incident beam with the
z-axis, allowing us to ignore all but the m = 0 partial
waves:

ψ(R) =

∞∑
`=0

c`
u`(R)

R
Y 0
` (R̂)

where c` are coefficients, u` is some radial wave function,
and Y m` are spherical harmonics.

B. Radial solutions

The radial wave function u` may be obtained by solv-
ing the Schrödinger-like equation:[10]

− 1

2µ

d2

dR2
u`(R) + V eff

` (R)u`(R) = Eu`(R) (2)

2 For clarity, we use natural units where ~ = 1.
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where the effective potential V eff
` adds an additional cen-

trifugal term:

V eff
` (R) = V (R) +

`(`+ 1)

2µR2

Equation (2) admits four different categories of solutions,
known as bound, scattering, resonant, and antibound
states, the choice of which depends on the boundary con-
ditions imposed on the equation.

In bound states, the radial part u(R) rapidly ap-
proaches 0 as R → ∞ and are thus L2-normalizable.
Specifically, its asymptotics behave like:

u(R) ∼ e−κR

From the perspective of scattering, these may be for-
mally treated as outgoing waves with imaginary momen-
tum k = κi. They form a discrete spectrum of energies,
all of which are negative.

In scattering states, the radial part u(R) do not ap-
proach 0 and thus cannot be normalized in the usual
sense. Their asymptotics behave as spherical waves:

u(R) ∼ e±ikR

They can be either incoming (−) or outgoing (+) and are
characterized by positive momenta k. The states form a
continuous spectrum and thus are often referred to as
“continuum states”, although we shall reserve the lat-
ter term for the more general set of states with complex
momenta.

Resonance states have characteristics of both scatter-
ing and bound states: they form a discrete spectrum yet
they are not normalizable as their asymptotics grow ex-
ponentially:

u(R) ∼ e(±k−iκ)iR

The sign determines whether they are capture (−) or de-
cay (+) resonances, which are analogous to incoming and
outgoing waves respectively, and they affect the tempo-
ral behavior of the wave function: the former grows over
time while the latter decays over time. In particular, they
always occur in pairs: for every decay resonance k − iκ
there is a corresponding capture resonance −k− iκ. The
complex energy of such a resonance state describes two
essential properties of the resonance:

Er −
Γ

2
i =

(k − iκ)2

2µ

Here, Er is the resonance energy and Γ is the width,
which quantifies the lifetime of this state. Physically rel-
evant states – those that have a noticeable effect on cross
sections – generally satisfy Γ� Er.

Antibound states are in a way dual to bound states.
They too appear as a discrete spectrum and have imagi-
nary momenta, but the momenta have the opposite sign
and thus the wave functions grow exponentially:

u(R) ∼ eκR

FIG. 1. Poles in the S-matrix on the complex momentum
plane.

FIG. 2. A contour that may be used in the Berggren com-
pleteness relation.

Antibound states are difficult to interpret[1], although
they do subtly manifest themselves in certain physical
phenomena. Although we do not make use of them in
this paper, the Berggren formalism can be generalized to
include antibound states as well.[11]

These four kinds of states can be represented graphi-
cally as points on the complex momentum plane, as de-
picted in Figure 1. The bound, resonant, and antibound
states appear as poles in the S-matrix, while all the points
on the real axis denote scattering states.

C. Berggren basis

A well-known theorem of scattering theory states:∑
k∈bound

|uk〉〈uk|+
∫ ∞

0

|u(k)〉〈u(k)|dk = 1̂

where uk are non-scattering wave functions (such as
bound states) and u(k) are the momentum space scat-
tering wave functions. This is known as the Newton
completeness relation[2] and allows bound and scattering
states to be unified into one basis in which all solutions
of (2) can be expanded.
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However, the relation does not include resonance
states. This can be remedied by choosing an alterna-
tive path for the integral, such as L+ contour shown in
2. This leads to the Berggren completeness relation:[4]

∑
k∈bound,
resonant

|uk〉〈uk|+
∫

L+

|u(k)〉〈u(k)|k2 dk = 1̂ (3)

where the sum over discrete states contains both bound
and resonant states that lie above the L+ contour. The
integral over scattering states has been changed to an
integral over continuum states, which have complex mo-
menta. Such a basis, which includes resonant states in
addition to bound and continuum states, is referred to as
a Berggren basis.

The exponentially divergent nature of states in a
Berggren basis pose a serious problem for the computa-
tion of norms and matrix elements, both of which involve
integrating the states from R = 0 to R = ∞. Fortu-
nately, there are ways to overcome the divergence using
regularization techniques.

Zel’dovich proposed[12] a technique in which the inte-

grand is multiplied by a Gaussian function e−εR
2

, which
suppresses the divergence at large R. Afterwards, the
ε → 0 limit may be taken, hoping that a finite result is
returned. The same technique was used by Berggren to
prove the completeness theorem (3).

Alternatively, one may use exterior complex scaling, in
which the outer part of the radial integration contour is
deformed so that it approaches infinity at an angle for
which the integral converges.[13]

D. Momentum-space Schrödinger equation

To solve for resonant states, it is convenient to use
the momentum-space version of the Schrödinger equa-
tion. First, we define the eigenfunctions φk of momentum
k, which are simply plane waves:

φk(R) =
1

(2π)3/2
eik·R

The coefficient of the functions has been chosen to satisfy∫
R3

φ∗k∗(R)φk′(R) d3R = δ(k − k′)

where δ is the Dirac delta distribution. One may consider
this to be a form of normalization, although this is not
the standard L2-norm.

A wave function in position space ψ may be converted
into its corresponding wave function in momentum space
ψ̃ via the Fourier transform:

ψ̃(k) =

∫
R3

φ∗k∗(R)ψ(R) d3R (4)

Given the symmetries of the problem, it would be useful
to factor out the angular components of the transforma-
tion. To do this, we apply the plane wave expansion to
φk:[14]

φk(R) =

∞∑
`=0

∑̀
m=−`

s`(kR)

kR
Y m`
∗(k̂)Y m` (R̂)

where s` is a rescaled Riccati–Bessel function defined by

s`(z) =

√
2

π
i`zj`(z)

and j` is the spherical Bessel function of order `. Phys-
ically, s`(kR) are partial wave scattering states of (2)
when the interaction V is absent. Substituting the expan-
sion into (4) and assuming azimuthal symmetry gives:3

ψ̃(k) =

∞∑
`=0

c`
ũ`(k)

k
Y 0
` (k̂)

where

ũ`(k) =

∫ ∞
0

s∗` (k
∗R)u`(R) dR

is the momentum-space analog of u`. The position-space
wave function can also be recovered from ũ`(k) by per-
forming the inverse transform:

u`(k) =

∫ ∞
0

s`(kR)ũ`(k) dk

Similarly, an interaction in position space U can be
transformed into its momentum-space version Ũ via a
Fourier-like transform:

Ũ(k,k′) =

∫
R3

φ∗k∗(R)U(R)φk(R) d3R

For a spherically symmetric interaction, that is, U(R) =
V (R), the plane wave expansion can be used to factor
out the angular components in the same manner:

Ũ(k,k′) =

∞∑
`=0

∑̀
m=−`

Y m` (k̂)
Ṽ`(k, k

′)

kk′
Y m`
∗(k̂′)

where

Ṽ`(k, k
′) =

∫ ∞
0

s∗` (k
∗R)V (r)s`(k

′R) dR (5)

In practical calculations, the integral (5) is usually per-
formed up to a certain cut-off Rmax.

3 In the original presentation, we used a different definition of the
momentum wave function ϕ`, which is related to the current
definition via ϕ`(k) = ũ`(k)/k.
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l = 2
δ 

/r
ad

E /MeV

fitted with
atan2(
    0.225MeV/2,
    1.346MeV − E
) + δbg(E)

FIG. 3. Fitting the energy dependence of the phase shift with
atan2(Γ/2, Er − E) to obtain the resonance parameters.

To obtain the momentum-space equation, we apply the
Fourier transform in (4) to equation (1):

1

2µ
k2ψ̃(k) +

∫
R3

Ũ(k,k′)ψ̃(k′) d3k′ = Eψ̃(k)

We then make use of the previous results to derive the
Schrödinger equation in momentum space for each partial
wave in a spherically symmetric potential:

1

2µ
k2ũ`(k) +

∫ ∞
0

Ṽ`(k, k
′)ũ`(k

′) dk′ = Eũ`(k) (6)

III. IMPLEMENTATION

A. The 11Be system

We shall consider the 11Be halo nucleus, which may
be modeled by a valence neutron on top of an inert 10Be
core (mass number A = 10). The interaction between the
bodies is described by a simple Woods–Saxon potential

V (R) =
V0

1 + e(R−Rws)/aws

where the radius Rws = 1.2A1/3 fm, the diffuseness aws =
0.65 fm, and depth V0 = −61.1 MeV. The reduced mass
of this system is µ = 1

2 × 0.0478450 MeV−1 fm−2.

B. Contour deformation

To obtain a Berggren basis with complex momenta,
the integration contour of (6) must deformed to some
new contour L+ so as to enclose at least one resonant
state:

1

2µ
k2ũ`(k) +

∫
L+

Ṽ`(k, k
′)ũ`(k

′) dk′ = Eũ`(k) (7)

This requires some a priori knowledge of where the state
is likely to be found.

Fortunately, we have previously solved the 11Be system
using the standard approach of applying a differential

equation solver and matching the asymptotic boundary
conditions to obtain the partial wave S-matrix elements
and phase shifts. From this calculation, a resonance of
energy Er = 1.346 MeV and width Γ = 0.225 MeV was
found for the ` = 2 partial wave, as shown in Figure 3.
We thus expect to find a resonant state with the same
parameters.

The contour we choose shall be a simple piecewise-
linear contour from k0 to ka to kb to kmax. The initial
k0 is a positive value close to zero, but not exactly zero
to avoid divergences in the evaluation of the spherical
Bessel function. The point ka is chosen to lie somewhere
in the fourth quadrant, deforming the contour so as to
enclose the resonant state. The point kb lies on the real
axis, bringing the contour back. Finally, the point kmax,
still on the real axis, ends the contour and is thus the
maximum momentum contained within the basis. Ide-
ally, kmax should be as large as is necessary to obtain an
acceptable result.

C. Discretization of the contour

To perform the calculation numerically, the integral in
(7) must be converted into a discrete sum. There are
many ways in which this can be done. We shall use the
quadrature technique, which allows analytic integrals to
be approximated well with a finite, carefully chosen set
of points (“nodes”) κ and weights wκ:∫

L+

Ṽ`(k, k
′)ũ`(k

′) dk′ ≈
∑
κ∈L+

Ṽ`(k, κ)ũ`(κ)wκ

Since contour is defined in terms of three linear pieces, we
shall apply the quadrature rule to each of the three seg-
ments separately. The quadrature scheme that we use is
the standard Gauss–Legendre quadrature scheme, good
for smooth polynomial-like functions.

After discretization, the equation (7) takes on the fol-
lowing form:

1

2µ
k2ũ`k +

∑
κ∈L+

Ṽ `kκũ
`
κwκ = Eũ`k

which can be solved as an eigenvalue problem∑
κ∈L+

H̃`
kκũ

`
κ = Eũ`k

with a Hamiltonian matrix

H̃`
kκ =

1

2µ
k2δkκ + Ṽ `kκwκ

Note that the Hamiltonian matrix is not hermitian,
which prevents the use of the efficient hermitian algo-
rithms. Despite this, the matrix can still be rewritten
into a complex-symmetric form, which may allow for
some optimizations.[15]



5

Im
 k

 /
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Re k /fm-1

contour discretized with
Gauss-Legendre
quadrature

FIG. 4. A discretized Gauss-Legendre contour with 80 points.

Im
 k

 /
fm

-1

Re k /fm-1

decay resonance at
E = (1.346 − 0.224i/2)MeV

FIG. 5. Momenta of the Berggren basis states for the ` = 2
partial wave.

IV. RESULTS

A. Resonant state

Figure 4 shows the typical discretized contour that
is used in our calculations. The points are not evenly
spaced; in particular, the points are denser near the end-
points, which is typical for Gauss-Legendre quadrature.

The contour is chosen specifically to enclose the ex-
pected resonance at Er = 1.346 MeV for the ` = 2 par-
tial wave, whose complex momentum is approximately
(0.254− 0.011i)fm−1.

After diagonalization, the energy eigenvalues are plot-
ted in Figure 5. The majority of the points line on the
original contour: these are the continuum states in the
Berggren basis. However, there is one state that lies out-
side the contour, indicating that it is likely a resonant
state. The position-space wave function of this reso-
nant state, plotted in Figure 6, is remarkably similar to
a bound state like behavior when R is small.

The complex momentum of this resonant state is
(0.254− 0.011i)fm−1 and its complex energy is (1.346−
0.224i/2)MeV, both of which are in agreement with the
previous results, albeit with a slight discrepancy in the
width of around 0.001 MeV. This could be attributed to
either uncertainties in the previous result, perhaps due
to a fitting error, or those in the current result.

Veff(R)

|u(R)|2 for E = (1.346 − 0.224i/2)MeV

R /fm

FIG. 6. Resonant state for the ` = 2 partial wave.

Im
 k

 /
fm

-1

Re k /fm-1

num of quadrature points

FIG. 7. Convergence of the resonant state with respect to the
number of points in the discretized contour. The legend has
been trimmed down for clarity, but there are in fact many
more colors in this plot than are shown in the legend.

B. Convergence

To understand the uncertainty of our results, we must
consider the various potential sources of error. It is possi-
ble that there may be insufficient points in the discretiza-
tion of the contour, leading to a poor result. We thus var-
ied the number of discretization points and plotted the
behavior of the resonant momentum, shown in Figure 7.
All other parameters were kept constant for consistency.
The plot shows a clear trend towards convergence, and by
around 80 points the uncertainty is already well within
10−4 fm−1. There is some peculiar behavior, however.
Firstly, there is a noticeable amount of clusterization of
the points for adjacent numbers of quadrature points,
thus the convergence appears to occur in large discrete
steps. Secondly, there is an emergent triangular pattern
in the plot, which indicates that there is some sort of
approximate 3-fold symmetry, perhaps an artifact of the
contour’s shape. For future investigations, it would be
useful to use a completely different contour and observe
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|∆
k|

 /
fm

−1

−Im k /fm−1

FIG. 8. Convergence of the resonant state with respect to the
location of ka.

|u
(R

)|
2

E = (1.346 − 0.224i/2)MeV

R /fm

FIG. 9. Poor asymptotics of the resonant state for the ` = 2
partial wave, as indicated by the small oscillations as well as
the sudden cliff at around 100 fm. The correct behavior is a
steady exponential growth.

whether this pattern persists.
Another potential source of error is in the shape of

the contour. Consider, for example, the location of ka.
To investigate this, we gradually increased the imaginary
component of ka from 0.02 fm−1 to 0.10 fm−1 in steps of
0.01 fm−1 and recorded how far the resonant momentum
has shift between each step of ka. This is plotted in Fig-
ure 8. The result shows an exponential decrease in the
shift, suggesting that convergence is very rapid. Eventu-
ally, the shift reaches saturation once it becomes as small
as the floating-point precision (not shown in the figure).

The choice of kmax, similar to ka, appears to make very
little difference beyond a certain point. We found that
kmax ≥ 3 fm−1 appears to be more than sufficient. We
also found the results to be largely insensitive of kb – the
resonant momentum fluctuations were below 10−9 fm−1.

The radius cut-off, Rmax is also one of the adjustable
parameters. Similar to kmax, a minimum of 30 fm ap-
peared to be sufficient to ensure convergence.

We remark that despite the accurate momenta, the
asymptotics of the position-space wave functions are
quite dubious: they can fluctuate significantly depending
on the parameters. The method is able to compute the

Im
 k

 /
fm

-1

Re k /fm-1

-1.46MeV

-32.2MeV

FIG. 10. Momenta of the basis states for the ` = 0 partial
wave.

|u(R)|2 for E = -32.2MeV

Veff(R)

R /fm

|u(R)|2 for E = -1.46MeV

FIG. 11. Bound states for the ` = 0 partial wave.

position-space wave functions accurately for small radii,
but as the radius increases the accuracy decreases rapidly,
as shown in Figure 9. This is alleviated somewhat by in-
creasing the number of discretization points, but it can
quickly become very costly. This is quite unlike the dif-
ferential equation approach that we had previously used
where the asymptotics are nearly exact. It may be pos-
sible to remedy this by matching the boundary at some
finite radius with the exact theoretical result.

C. Bound states

Interestingly, although not surprisingly, the same
method works not only for computing resonant states
but also bound states. We applied the same technique
as before to the ` = 0 partial wave and were able to
resolve two bound states with energies −32.2 MeV and
−1.46 MeV as shown in Figure 10. The choice of the
contour did not matter, since bound states are always
included in the basis, but we kept our original contour
for consistency. The position-space wave functions of the
bound states are plotted in Figure 11.
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V. CONCLUSIONS

We have performed a calculation of the 11Be system us-
ing a simple model and have extracted a resonant state
with characteristics consistent with our previous calcu-
lation through an entirely different approach. In doing
so, we have demonstrated a technique for calculating res-
onant states using a basis expansion approach, showing
both its utility and robustness.

For future investigations, there are several directions
in which the project can continue. For one, it would be
useful to further analyze the uncertainities in the calcu-
lations due to other factors, such as the choice of the
quadrature method, the location of k0, or the specified
tolerance in the calculation of Ṽ matrix elements.

Another potential direction would be to incorporate
more complicated interactions, such surface Woods–
Saxon potentials, or spin-orbit potentials.

It would be interesting to see how far the technique can

be generalized. One could look into situations where the
spherical symmetry is lost. One could also incorporate
the long-ranged Coulomb potential into the Berggren ba-
sis. There are some major complications that arise in
this, for both theoretical and numerical reasons. For ex-
ample, calculation of complex Coulomb wave functions
is not nearly as straightforward as calculating complex
Bessel functions. The proof of the completeness relation
for Coulombic potential is also much more complicated
than that of short-ranged potentials.[16]
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